Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 32-49, 2023.
Article in English | WPRIM | ID: wpr-971467

ABSTRACT

Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.


Subject(s)
Humans , Cell Hypoxia , Cell Line, Tumor , Glioblastoma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Microenvironment , Brain Neoplasms/pathology
2.
Journal of Integrative Medicine ; (12): 120-129, 2023.
Article in English | WPRIM | ID: wpr-971656

ABSTRACT

Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; 21(2): 120-128.


Subject(s)
Humans , Glioblastoma/pathology , Endocannabinoids/therapeutic use , Brain Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Cannabinoids/therapeutic use
3.
Protein & Cell ; (12): 105-122, 2023.
Article in English | WPRIM | ID: wpr-971612

ABSTRACT

Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.


Subject(s)
Mice , Animals , Humans , Glioblastoma/pathology , Endothelial Cells/pathology , DNA Copy Number Variations , Brain/metabolism , Brain Neoplasms/pathology
4.
Arq. bras. neurocir ; 40(4): 368-373, 26/11/2021.
Article in English | LILACS | ID: biblio-1362105

ABSTRACT

Glioblastoma multiforme (GBM) is the most frequent and most aggressive primary brain tumor in adults,mainly located in the cerebral hemispheres. In the literature, few cases of primary GBM have been reported to have radiographic and intraoperative features of extra-axial lesions, leading to a diagnostic dilemma. Despite the advances in imaging modalities, the diagnosis of GBM can be challenging, and it is mainly based on the histopathologic confirmation of the excised tumor. We describe the case of a 76- year-old previously healthy female patient who presented to our hospital due to speech disturbances and cognitive impairment. The diagnosis of the tumor type on magnetic resonance imaging (MRI) was difficult, as the findings were suggestive of a malignant meningioma due to the heterogeneous enhancement of a dural-based mass with a dural tail sign. Moreover, the intraoperative findings revealed an extra-axial mass attached to the dura. A histological examination confirmed the diagnosis of glioblastoma with arachnoid infiltration. The patient underwent adjuvant radiotherapy and concomitant temozolomide treatment, she had clinical improvement postoperatively, and was stable during the six months of follow-up. Glioblastoma should be considered in the differential diagnosis of primary extra-axial mass with atypical and malignant features, especially in elderly patients.


Subject(s)
Humans , Female , Aged , Brain Neoplasms/therapy , Glioblastoma/radiotherapy , Glioblastoma/therapy , Arachnoid , Brain Neoplasms/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Diagnosis, Differential , Temozolomide/therapeutic use
5.
Arq. bras. neurocir ; 40(3): 284-287, 15/09/2021.
Article in English | LILACS | ID: biblio-1362168

ABSTRACT

The COVID-19 pandemic has affected a large number of patients in all countries, overwhelming healthcare systems worldwide. In this scenario, surgical procedures became restricted, causing unacceptable delays in the treatment of certain pathologies, such as glioblastoma. Regarding this tumor with high morbidity and mortality, early surgical treatment is essential to increase the survival and quality of life of these patients. Association between COVID-19 and neurosurgical procedures is quite scarce in the literature, with a few reported cases. In the present study, we present a rare case of a patient undergoing surgical resection of glioblastoma with COVID-19.


Subject(s)
Humans , Male , Aged , Brain Neoplasms/surgery , Glioblastoma/surgery , COVID-19/drug therapy , Brain Neoplasms/diagnostic imaging , Treatment Outcome , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Neurosurgical Procedures/methods
6.
Salud pública Méx ; 62(3): 255-261, May.-Jun. 2020. tab, graf
Article in Spanish | LILACS | ID: biblio-1377311

ABSTRACT

Resumen: Objetivo: Determinar distribución, localización y cambios de la frecuencia de tumores astrocíticos (TA) en un instituto mexicano de neurología. Material y métodos: Se revisaron los registros institucionales de TA de cinco décadas. Se compararon las relaciones TA/egresos quirúrgicos (EQ) y TA/total de tumores del sistema nervioso central (TSNC) de 1995 a 2014. Resultados: Se analizaron 2 287 TA (1 356 en hombres y 931 en mujeres). El glioma más común fue el glioblastoma multiforme (GBM), que estuvo presente en adultos jóvenes con una frecuencia mayor a la reportada en otros estudios. La relación TA/EQ y TA/TNSC fue similar entre 1995 y 2014. Conclusiones: En general, la frecuencia de TA atendidos en el Instituto es similar a la reportada internacionalmente. No obstante, los casos de TA en el subgrupo de adultos jóvenes con GBM son más frecuentes (40%) que las incidencias reportadas en otros estudios (menores al 5%). No se encontró variación significativa en la frecuencia de TA durante las últimas dos décadas.


Abstract: Objective: To determine distribution, localization and frequency variations of astrocytic tumors (AT) in a Mexican Institute of neurology. Materials and methods: Institutional registries of AT from five decades were analyzed. AT/Surgical discharges (SD) and AT/Central Nervous System Tumors (CNST) from 1995 to 2014 were compared. Results: Two thousand two hundred and eighty-seven AT (1 356 men and 931 women) were analyzed. The most common glioma was glioblastoma multiforme (GBM), found in young adults with a higher frequency to that reported in other studies. Relation of AT/SD, as well as, relation of AT/CNST was similar between 1995 and 2014. Conclusions: In general, the frequency of AT attended at the Institute is similar to that found worldwide, being only higher the number of GBM in younger adults. There was not significant variation in the frequency of AT during the time studied.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Astrocytoma/epidemiology , Central Nervous System Neoplasms/epidemiology , Astrocytoma/pathology , Retrospective Studies , Central Nervous System Neoplasms/pathology , Sex Distribution , Age Distribution , Glioblastoma/pathology , Glioblastoma/epidemiology , Academies and Institutes/statistics & numerical data , Neoplasm Grading , Mexico/epidemiology , Neurology/statistics & numerical data
7.
Arq. neuropsiquiatr ; 78(1): 34-38, Jan. 2020. graf
Article in English | LILACS | ID: biblio-1088980

ABSTRACT

Abstract Brain tumors are one of the most common causes of cancer-related deaths around the world. Angiogenesis is critical in high-grade malignant gliomas, such as glioblastoma multiforme. Objective: The aim of this study is to comparatively analyze the angiogenesis-related genes, namely VEGFA, VEGFB, KDR, CXCL8, CXCR1 and CXCR2 in LGG vs. GBM to identify molecular distinctions using datasets available on The Cancer Genome Atlas (TCGA). Methods: DNA sequencing and mRNA expression data for 514 brain lower grade glioma (LGG) and 592 glioblastoma multiforme (GBM) patients were acquired from The Cancer Genome Atlas (TCGA), and the genetic alterations and expression levels of the selected genes were analyzed. Results: We identified six distinct KDR mutations in the LGG patients and 18 distinct KDR mutations in the GBM patients, including missense and nonsense mutations, frame shift deletion and altered splice region. Furthermore, VEGFA and CXCL8 were significantly overexpressed within GBM patients. Conclusions: VEGFA and CXCL8 are important factors for angiogenesis, which are suggested to have significant roles during tumorigenesis. Our results provide further evidence that VEGFA and CXCL8 could induce angiogenesis and promote LGG to progress into GBM. These findings could be useful in developing novel targeted therapeutics approaches in the future.


Resumo Os tumores cerebrais são uma das causas mais comuns de mortes relacionadas ao câncer em todo o mundo. A angiogênese tem caráter crítico em gliomas malignos de alto grau, como o glioblastoma multiforme. Objetivo: O objetivo deste estudo foi analisar comparativamente os genes relacionados à angiogênese, VEGFA, VEGFB, KDR, CXCL8, CXCR1 e CXCR2 em GBG vs. GBM para identificar distinções moleculares usando conjuntos de dados disponíveis no The Cancer Genome Atlas (TCGA). Métodos: Os dados de sequenciamento de DNA e expressão de mRNA para 514 pacientes com glioma cerebral de baixo grau (GBG) e 592 pacientes com glioblastoma multiforme (GBM) foram adquiridos do TCGA e as alterações genéticas e os níveis de expressão dos genes selecionados foram analisados. Resultados: Identificamos seis mutações KDR distintas nos pacientes GBG e 18 mutações KDR distintas nos pacientes GBM, incluindo mutações missense e nonsense, exclusão de mudança de quadro e região de emenda alterada. Além disso, VEGFA e CXCL8 foram significativamente super-expressos nos pacientes com GBM. Conclusões: VEGFA e CXCL8 são fatores importantes para a angiogênese, os quais parecem ter um papel significativo durante a tumorigênese. Nossos resultados fornecem evidências adicionais de que o VEGFA e o CXCL8 podem induzir a angiogênese e promover o GBG a progredir no GBM. Esses achados podem ser úteis no desenvolvimento de novas abordagens terapêuticas direcionadas no futuro.


Subject(s)
Humans , Brain Neoplasms/genetics , Glioblastoma/genetics , Carcinogenesis/genetics , Glioma/genetics , Neovascularization, Pathologic/genetics , Reference Values , Gene Expression , Interleukin-8/analysis , Point Mutation/genetics , Glioblastoma/pathology , Receptors, Interleukin-8A/analysis , Receptors, Interleukin-8B/analysis , Vascular Endothelial Growth Factor Receptor-2/analysis , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor B/analysis , Glioma/pathology
9.
Clinics ; 75: e1553, 2020. tab, graf
Article in English | LILACS | ID: biblio-1133414

ABSTRACT

OBJECTIVES: To assess the patterns of failure and prognostic factors in Brazilian patients with glioblastoma multiforme (GBM) treated with radiotherapy (RT) and concurrent and adjuvant temozolomide (TMZ). METHODS: Patients with diagnosed GBM post-resection received postoperative RT. TMZ was administered concurrently at 75 mg/m2/day for 28 consecutive days and adjuvant therapy at 150-200 mg/m2/day for 5 days every 28 days. Radiographic failure was defined as any new T1-enhancing lesion or biopsy-confirmed progressive enhancement inside of the radiation field. When possible, patients with recurrence were salvaged with metronomic TMZ, either in combination with a local treatment or alone (surgery or re-irradiation). Several prognostic factors were evaluated for overall survival (OS). Univariate and multivariate analyses were performed to identify significant factors. A p-value <0.05 was considered significant. RESULTS: This study included 50 patients. The median follow-up time was 21 months. The median RT dose was 60 Gy and all patients received concomitant TMZ. During follow-up, 41 (83.6%) failures were observed, including 34 (83%) in-field, 4 (9.7%) marginal, and 3 (7.3%) distant failures. Metronomic TMZ was used as salvage treatment in 22 (44%) cases and in combination with local treatment in 12 (24%) cases. The median OS and progression-free survival times for the entire cohort were 17 and 9 months, respectively. In univariate analysis, the following factors were significant for better OS: maximal surgical resection (p=0.03), Karnofsky Performance Score (KPS)>70 at diagnosis (p=0.01), metronomic TMZ treatment (p=0.038), recursive partitioning analysis class III (p=0.03), and time to failure >9 months (p=0.0001). In multivariate analysis, the following factors remained significant for better OS: metronomic TMZ (p=0.01) and time to failure >9 months (p=0.0001). CONCLUSION: The median OS of Brazilian patients with GBM treated with RT and TMZ was satisfactory. Although TMZ therapy has become the standard of care for patients with newly diagnosed GBM, the recurrence rate is extremely high. Metronomic TMZ as salvage treatment improved survival in these patients.


Subject(s)
Humans , Male , Female , Brain Neoplasms/therapy , Glioblastoma/therapy , Antineoplastic Agents, Alkylating/therapeutic use , Chemoradiotherapy/methods , Temozolomide/therapeutic use , Neoplasm Recurrence, Local/epidemiology , Survival , Brain Neoplasms/pathology , Brazil/epidemiology , Retrospective Studies , Treatment Outcome , Chemotherapy, Adjuvant , Glioblastoma/mortality , Glioblastoma/pathology
10.
Gac. méd. Méx ; 155(5): 439-446, Sep.-Oct. 2019. tab, graf
Article in English | LILACS | ID: biblio-1286540

ABSTRACT

Introduction: Gliomas are neoplasms with high recurrence and mortality. Due to the difficulty to apply the World Health Organization (2016) classification, developing countries continue to use histological evaluation to diagnose and classify these neoplasms. Objective: To develop a semi-quantitative scale to numerically grade gliomas by its morphological characteristics. Method: A cohort of patients with gliomas was assessed and followed for 36 months. Tumor tissue sections were analyzed and graded, including aspects such as cell line, cellularity, nuclear pleomorphism, mitosis, endothelial hyperplasia, hypoxic changes, apoptotic bodies, necrosis, hemorrhage and proliferation index. Results: 58 cases were analyzed. Low-grade gliomas median score was 12 points (9 and 13.5 for percentiles 25 and 75, respectively), whereas for high-grade gliomas it was 17 points (16 and 20.5 for percentiles 25 and 75, respectively) (p < 0.0001). Thirty-six-month survival of patients with low (13/17) and high grade gliomas (6/41) was also significantly different (p < 0.0001). Conclusions: The semi-quantitative morphological scale allows an objective evaluation of gliomas, with an adequate correlation between the score, tumor grade and survival time.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Brain Neoplasms/pathology , Glioma/pathology , Oligodendroglioma/mortality , Oligodendroglioma/pathology , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/classification , Brain Neoplasms/mortality , Survival Analysis , Cohort Studies , Glioblastoma/mortality , Glioblastoma/pathology , Ependymoma/mortality , Ependymoma/pathology , Neoplasm Grading , Glioma/classification
11.
Biomédica (Bogotá) ; 38(3): 378-387, jul.-set. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-973991

ABSTRACT

Resumen Introducción. La cuantificación de la inestabilidad cromosómica es un parámetro importante para evaluar la genotoxicidad y la radiosensibilidad. Las técnicas convencionales requieren cultivos celulares o laboriosos análisis microscópicos de cromosomas o núcleos. La citometría de flujo en reticulocitos ha surgido como una alternativa para los estudios in vivo, ya que reduce los tiempos de análisis e incrementa hasta en 20 veces el número de células analizables. Objetivos. Estandarizar los parámetros de citometría de flujo requeridos para seleccionar y cuantificar reticulocitos micronucleados (RET-MN) a partir de muestras de sangre periférica, y cuantificar la frecuencia de esta subpoblación anormal como medida de inestabilidad citogenética en sendas poblaciones de voluntarios sanos (n=25) y pacientes (n=25) recién diagnosticados con gliomas de alto grado antes de iniciar el tratamiento. Materiales y métodos. Las células sanguíneas se marcaron con anti-CD71-PE para reticulocitos, anti- CD61-FITC para la exclusión de plaquetas y yoduro de propidio para detectar el ADN en reticulocitos. La fracción celular MN-RETCD71+ se seleccionó y se cuantificó con un citómetro de flujo automático. Resultados. Se describió detalladamente la estandarización de los parámetros citométricos, con énfasis en la selección y la cuantificación de la subpoblación celular MN-RETCD71+. Se establecieron los niveles basales de MN-RETCD71+ en la población de control y en los pacientes se encontró un incremento de 5,2 veces antes de iniciar el tratamiento (p<0,05). Conclusión. Los resultados evidenciaron la utilidad de la citometría de flujo acoplada a la marcación de las células RETCD71+ como método eficiente para cuantificar la inestabilidad cromosómica in vivo. Se sugieren posibles razones del incremento de micronúcleos en células RETCD71+ de pacientes con gliomas.


Abstract Introduction: The quantification of chromosomal instability is an important parameter to assess genotoxicity and radiosensitivity. Most conventional techniques require cell cultures or laborious microscopic analyses of chromosomes or nuclei. However, a flow cytometry that selects the reticulocytes has been developed as an alternative for in vivo studies, which expedites the analytical procedures and increases up to 20 times the number of target cells to be analyzed. Objectives: To standardize the flow cytometry parameters for selecting and quantifying the micronucleated reticulocytesCD71+ (MN-RET) from freshly drawn peripheral blood and to quantify the frequency of this abnormal cell subpopulation as a measure of cytogenetic instability in populations of healthy volunteers (n =25), and patients (n=25), recently diagnosed with high-grade gliomas before the onset of treatment. Materials and methods: Blood cells were methanol-fixed and labeled with anti-CD-71-PE for reticulocytes, antiCD-61-FITC for platelet exclusion, and propidium iodide for DNA detection in reticulocytes. The MN-RETCD71+ cell fraction was selected and quantified with an automatic flow cytometer. Results: The standardization of cytometry parameters was described in detail, emphasizing the selection and quantification of the MN-RETCD71+ cellular fraction. The micronuclei basal level was established in healthy controls. In patients, a 5.2-fold increase before the onset of treatment was observed (p <0.05). Conclusion: The data showed the usefulness of flow cytometry coupled with anti-CD-71-PE and anti- CD-61-FITC labeling in circulating reticulocytes as an efficient and high resolution method to quantify chromosome instability in vivo. Finally, possible reasons for the higher average of micronuclei in RETCD71+ cells from untreated high-grade glioma patients were discussed.


Subject(s)
Female , Humans , Male , Reticulocytes/pathology , Glioblastoma/genetics , Chromosomal Instability , Micronuclei, Chromosome-Defective , Flow Cytometry/methods , Specimen Handling/methods , Cell Separation/methods , Risk Factors , Glioblastoma/blood , Glioblastoma/pathology , Neoplasm Grading
12.
Biol. Res ; 51: 16, 2018. tab, graf
Article in English | LILACS | ID: biblio-950902

ABSTRACT

BACKGROUND: Stathmin as a critical protein involved in microtubule polymerization, is necessary for survival of cancer cells. However, extremely little is known about Stathmin in glioblastoma. So, this study was designed to elucidate the function of Stathmin gene in the tumorigenesis and progression of glioblastoma cells. METHOD: The lentiviral interference vector pLV3-si-Stathmin targeting Stathmin gene and the control vector pLV3-NC were established for the co-transfection of 293T cells together with the helper plasmids. Viral titer was determined via limiting dilution assay. Then pLV3-si-Stathmin and pLV3-NC were stably co-transfected into U373 and U87-MG glioblastoma cells. Expression levels of Stathmin protein in each group were determined by using Western Blot, and the proliferation and migration ability of the cells with downregulated Stathmin were evaluated through CCK8 assay and transwell invasion assay, respectively. Cell cycles and cell apoptosis were detected with flow cytometry. Finally, the effect of Stathmin in tumor formation was determined in nude mice. RESULT: DNA sequencing and viral titer assay indicated that the lentiviral interference vector was successfully established with a viral titer of 4 × 108 TU/ml. According to the results from Western Blotting, Stathmin protein expression level decreased significantly in the U373 and U87-MG cells after transfected with pLV3-si-Stathmin, respectively, compared with those transfected with pLV3-NC. In glioblastoma cells, the cell proliferation and migration were greatly inhibited after the downregulation of Stathmin protein. Flow cytometry showed that much more cells were arrested in G2/M phasein Stathmin downregulated group, compared with the non-transfection group and NC group. But Stathmin downregulation did not induce significant cell apoptosis. Tumor formation assay in nude mice showed that tumor formation was delayed after Stathmin downregulation, with a reduction in both tumor formation rate and tumor growth velocity. CONCLUSION: Stathmin downregulation affected the biological behaviors of U373 and U87-MG glioblastoma cells, inhibiting the proliferation and migration of tumor cells. Stathmin gene may serve as a potential target in gene therapy for glioblastoma.


Subject(s)
Animals , Mice , Down-Regulation/genetics , Glioblastoma/metabolism , Cell Proliferation/genetics , Stathmin/genetics , Transfection , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , Stathmin/metabolism , Genetic Vectors
13.
Arq. neuropsiquiatr ; 75(12): 875-880, Dec. 2017. graf
Article in English | LILACS | ID: biblio-888280

ABSTRACT

ABSTRACT Glioblastoma (GBM) is the most malignant glioma and represents 29% of all brain tumors. Tumorigenesis is intimately connected with characteristics acquired in the physiologic pathway of cellular death. Objective: In the present study, the expression of anti-apoptotic (XIAP and Bcl-2) and apoptotic (cytochrome C, caspase 9, APAF-1), caspase 3 and the Smac/DIABLO genes related to the apoptosis pathway were evaluated in 30 samples of glioblastoma. Methods: The gene expression was evaluated in 30 glioblastomas (WHO grade IV) and compared to 10 white matter control samples with real-time PCR. Results and Conclusion: There were higher expressions of XIAP (p = 0.0032) and Bcl-2 (p = 0.0351) in the glioblastoma samples compared to the control samples of normal brain. These results raise the question of whether Bcl-2 and XIAP genes can be responsible for the inhibition of programmed cell death in glioblastomas. Moreover, they provide additional information capable of allowing the development of new target therapy strategies.


RESUMO O glioblastoma (GBM) é o glioma mais maligno e representa 29% de todos os tumores cerebrais. A tumorigênese está intimamente ligada à características adquiridas na via fisiológica de morte celular. Objetivo: Avaliar a expressão de genes anti-apoptóticos (XIAP e Bcl-2) e apoptóticos (citocromo C, a caspase 9, APAF-1), caspase 3 e SMAC/DIABLO, relacionados à apoptose, em 30 amostras de tecido de pacientes com glioblastoma. Métodos: A expressão gênica foi avaliada em trinta glioblastomas e comparada a dez amostras controles de substância branca por PCR em tempo real. Resultados e Conclusão: Houve maior nível de expressão de XIAP (p = 0,0032) e Bcl-2 (p = 0,0351) em comparação com as amostras controle, de cérebro normal. Estes resultados levantam a questão de que os genes Bcl-2 e XIAP podem ser responsáveis pela inibição da morte celular programada em glioblastomas, além disso, proporcionam informação adicional capaz de permitir o desenvolvimento de novas estratégias de terapia alvo.


Subject(s)
Humans , Male , Female , Middle Aged , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Apoptosis , Glioblastoma/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , X-Linked Inhibitor of Apoptosis Protein/genetics , Real-Time Polymerase Chain Reaction
14.
MedicalExpress (São Paulo, Online) ; 3(6)Nov.-Dec. 2016. graf
Article in English | LILACS | ID: biblio-841462

ABSTRACT

OBJECTIVE: ASCT2 and LAT1 are aminoacid transporters involved in glutamine transport and play a role in tumor growth. Previous studies have shown an association of ASCT2 to cell proliferation through the mechanistic Target of Rapamycin (mTOR) translational machinery; LAT1 has been shown as a prognostic marker due to its relation to tumor invasion, microscopic vascular invasion and metastasis. This study analyzed the gene expression of ASCT2 and LAT1 in astrocytomas of different grades and how this correlates to clinical outcome in glioblastoma patients. METHOD: This is an observational study with ASCT2 and LAT1 mRNA expression analysis in 153 samples of human astrocytomas, distributed in different World Health Organization (WHO) grades of malignancy (23 at grade I or pilocytic astrocytoma, 26 at grade II or low-grade astrocytoma, 18 at grade III or anaplastic astrocytoma, 86 at grade IV astrocytoma or glioblastoma (AGIV or GBM)); these were compared to 22 non-neoplastic brain samples. RESULTS: Significant hyperexpression of both genes was observed particularly in malignant astrocytomas (GIII & GBM). Moreover, LAT1 hyperexpression impacted negatively in the overall survival in a subset of GBM patients. CONCLUSION: LAT1 is more expressed in higher grade astrocytomas. It leads to a poorer prognosis among GBM patients and may be a potential therapeutical target.


OBJETIVO: ASCT2 e LAT1 são transportadores de aminoácidos envolvidos no transporte de glutamina e desempenham um papel no crescimento tumoral. Estudos prévios mostraram uma associação de ASCT2 com proliferação celular através da maquinaria de tradução do mTOR; tem sido mostrado que o LAT1 é um marcador prognóstico devido à sua relação com invasão tumoral, invasão vascular microscópica e metástase. Este estudo analisou a expressão gênica de ASCT2 e LAT1 em astrocitomas de diferentes graus e sua correlação com desfecho clínico em pacientes com glioblastoma. METODO: Este é um estudo observacional com análise de expressão de RNAm de ASCT2 e LAT1 em 153 amostras de astrocitomas humanos, distribuídas em diferentes graus de malignidade segundo a OMS (23 astrocitomas de grau I ou astrocitoma pilocítico, 26 de astrocitoma de grau II ou astrocitoma de baixo grau, 18 de astrocitoma de grau III ou astrocitoma anaplásico, 86 de astrocitoma de grau IV ou glioblastoma (AGIV ou GBM); estes foram comparados com 22 amostras cerebrais não neoplásicas. RESULTADOS: Foi observada uma hiperexpressão de ambos os genes, particularmente nos astrocitomas malignos (GIII & GBM). Além disso, a hiperexpressão LAT1 impactou negativamente na sobrevida global em um grupo de pacientes com GBM. CONCLUSÃO: LAT1 é mais expresso em astrocitomas de grau maior. Isso leva a um pior prognóstico entre os pacientes com GBM e pode ser um potencial alvo terapêutico.


Subject(s)
Humans , Astrocytoma , Gene Expression , Glioblastoma/pathology , Large Neutral Amino Acid-Transporter 1/analysis , Glutamine
15.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950860

ABSTRACT

BACKGROUND: Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell mode.l METHODS: We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. RESULTS: Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. CONCLUSIONS: Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.


Subject(s)
Humans , Animals , Cattle , Brain Neoplasms/pathology , Glioblastoma/pathology , Galectins/physiology , Time Factors , Brain Neoplasms/genetics , Tumor Cells, Cultured , Cell Movement/physiology , Apoptosis/physiology , Glioblastoma/genetics , Reverse Transcriptase Polymerase Chain Reaction , Galectins/analysis , Galectins/pharmacology , Galectin 1/analysis , Galectin 1/physiology , Galectin 3/analysis , Galectin 3/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Flow Cytometry/methods
16.
Arq. neuropsiquiatr ; 73(7): 561-568, 07/2015. tab, graf
Article in English | LILACS | ID: lil-752384

ABSTRACT

We studied 36 glioblastoma cases at HC-UNICAMP from 2008 to 2012 and classified the immunohistochemical distribution of the wild-type epidermal growth factor receptor (EGFR), mutated forms of p53 protein and isocitrate dehydrogenase-1 (IDH-1) and murine double protein 2 (MDM2). Immunostaining findings were correlated with clinical data and response to treatment (surgery, chemotherapy and radiotherapy). About 97% of the tumors were primary, most of them localized in the frontal lobe. Mean time free of clinical or symptomatic disease and free time of radiological disease were 7.56 and 7.14 months, respectively. We observed a significant positive correlation between expressions of p53 and MDM2, EGFR and MDM2. Clinical, radiological and overall survivals also showed a significant positive correlation. p53 staining and clinical survival showed a significant negative correlation. The current series provides clinical and histopathological data that contribute to knowledge on glioblastoma in Brazilians.


Estudamos 36 casos de glioblastoma acompanhados no HC-UNICAMP de 2008 a 2012 e classificamos a marcação imunoistoquímica da forma selvagem do receptor do fator de crescimento epidérmico (EGFR), formas mutantes da proteína p53 e isocitrato desidrogenase-1 (IDH-1) e proteína murina dupla 2 (MDM2). Os resultados de imunoistoquímica foram correlacionados com dados clínicos e resposta ao tratamento (cirurgia, quimioterapia e radioterapia). Cerca de 97% dos tumores foram primários, grande parte localizada no lobo frontal. O tempo médio livre de doença clínica ou sintomática e o tempo livre de doença radiológica foram de 7.56 e 7.14 meses, respectivamente. Observou-se correlação positiva entre a expressão das proteínas p53 e MDM2, EGFR e MDM2. Sobrevivências clínica, radiológica e global também mostraram correlação positiva e significativa. A expressão para p53 e sobrevivência clínica mostrou correlação negativa. O estudo fornece dados clínicos e histopatológicos que contribuem para o conhecimento sobre glioblastoma em brasileiros.


Subject(s)
Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Biomarkers, Tumor/analysis , Brain Neoplasms/chemistry , Glioblastoma/chemistry , Isocitrate Dehydrogenase/analysis , /analysis , ErbB Receptors/analysis , /analysis , Biomarkers, Tumor/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Immunohistochemistry , Isocitrate Dehydrogenase/genetics , Mutation , Prognosis , /genetics , Reference Values , Retrospective Studies , ErbB Receptors/genetics , Statistics, Nonparametric , /genetics
18.
São Paulo; s.n; s.n; 2014. 189 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-847104

ABSTRACT

Glioblastoma multiforme (G BM), ou astrocitoma grau IV, é o tumor mais comum e letal do sistema nervoso central. Uma de suas características mais marcantes é seu alto potencial invasivo do tecido normal adjacente. Neste processo, o remodelamento da matriz extracelular, modulado por enzimas que degradam seus componentes e por inibidores destas enzimas, é crucial. Foi descrito que a expressão de MMP-2 e MMP-9, membros da família das metaloproteinases de matriz, aumentam conforme a progressão de astrocitomas. A variante canônica de RECK suprime a invasão tumoral e metástase através da inibição da atividade de, pelo menos, três MMPs: MMP-2, MMP-9 e MMP-14. Uma correlação positiva tem sido observada entre a abundância da expressão de RECK em amostras tumorais e um prognóstico mais favorável para pacientes com diversos tipos de tumores. Neste estudo, variantes de splicing do gene supressor de tumor RECK foram identificadas através da análise de Expressed sequenced Tags (ESTs), isoladas por RT-PCR, sequenciadas e clonadas. Três novas variantes de splicing do gene RECK foram identificadas e caracterizadas. O perfil de expressão dos transcritos de RECK foi determinado através de ensaios de RT-PCR quantitativo em um painel de tecidos normais e, também, durante a progressão de astrocitomas. Foram utilizadas, para esta análise, amostras macro dissecadas de tumores de pacientes com astrocitomas grau I (n=15), II (n=15), III (n=15) e GBMs (n=30). Os resultados mostram que maior expressão de RECK canônico, acompanhada de maior razão de expressão da variante canônica em relação às variantes de splicing alternativo, correlaciona positivamente com maior sobrevida global de pacientes com GBM, sugerindo seu papel como potenciais biomarcadores para o prognóstico destes pacientes. Análise funcional das isoform as de RECK em células U87 MG revelou que as células superexpressando as isoformas não apresentam inibição do processo de invasão celular, como observado para superexpressão da proteína canônica. Dentre as isoformas analisadas, destaca-se RECK-B, isoforma potencialmente ancorada à membrana plasmática por GPI, como a proteína canônica RECK, sugerindo uma possível colocalização destas variantes. Observa-se que células superexpressando RECK-B apresentam maior capacidade tumorigênica. Os resultados indicam que as variantes de RECK e o balanço entre a expressão destas variantes, apresentam um papel importante no comportamento e na agressividade de GBMs, tendo potencial valor na clínica. Além disso, para abrir perspectivas para o estudo das variantes de RECK, o balanço de expressão dos transcritos canônico e alternativos deste gene foi explorado durante os processos de diferenciação osteogênica e adipogênica. Os resultados indicam que a expressão da variante canônica é mais abundante em relação à expressão de suas isoformas em estágios tardios da adipogênese, sendo que o perfil inverso é observado em relação à isoforma B durante a osteogênese, sugerindo que o balanço entre os níveis de expressão das isformas de RECK possui um potencial papel biológico que deve ser explorado durante esses processos. Em conjunto, os resultados demonstram a existência de, pelo menos, três variantes de splicing do gene supressor de tumor RECK com envolvimento na tumorigênese e na diferenciação celular, abrindo novas perspectivas para o estudo e a aplicação do gene RECK na clínica


Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most common and lethal tumor of the central nervous system. One of the most striking features of GBMs is their invasive potential of the normal surrounding brain tissue. It has been described that MMP-2 and MMP-9 expression levels increase during astrocytoma progression. Canonical RECK suppresses tumor invasion and metastasis by negatively regulating at least three matrix metalloproteinases, namely: MMP-9, MMP-2 and MT1-MMP. A positive correlation has been observed between the abundance of RECK express ion in tumor samples and a more favorable prognosis for patients with several types of tumors. In this study, splice variants of the RECK tumor suppressor gene were identified by Expressed Sequence Tag (EST) analysis, isolated by RT-PCR, sequenced and cloned. Three novel alternatively spliced variants of the RECK tumor suppressor gene were identified and characterized. The RECK transcripts expression profiles were investigated using quantitative RT-PCR assays in a normal tissue RNA panel and, also, during astrocytoma progression in macrodissected tumor samples of patients with astrocytoma grades I (n=15), II (n=15), III (n=15) and IV/GBM (n=30). The results show that higher canonical RECK expression, accompanied by a higher ratio of canonical to alternative transcript expression, positively correlated with higher overall survival rate after chemotherapeutic treatment of GBM patients. Our findings suggest that these RECK transcript variants may potentially be used as biomarkers for prognosis of GBM patients. U87 MG cells overexpressing each RECK alternative variant were generated and found to lack the supressive role of cellular invasion processes found upon overexpressing the canonical protein. Among the characterized isoforms, RECK-B stands out, since this isoform is potentially anchored to the cell membrane by a GPI anchor, exactly as the canonical RECK and, also, since cells overexpressing RECK-B display greater tumorigenic capacity. The results indicate that RECK variants and the balance between the expressions of these variants, play an important role in the behavior and aggressiviness of GBMs, therefore have a potential translational application. In addition, in order to investigate new perspectives for the analysis of these isoforms, the expression balance of RECK transcripts was assessed during osteogenesis and adipogenesis, by qRT - PCR. The results show that the expression of the canonical RECK variant is more abundant that that of its alternative isoforms in later stages of adipogenic differentiation. The opposite profile is found regarding RECK-B during osteogenesis, suggesting that the balance between the expressions of these transcripts may have a potential role during these processes. Taken together, the results show the existence of, at least, three alternatively spliced variants of the RECK tumor suppressor gene, which are involved in tumogigenesis and cellular differentiation, o pening new perspectives for studies and clinical application of the RECK gene


Subject(s)
Alternative Splicing , Astrocytoma/pathology , Biomarkers, Tumor , Glioblastoma/pathology , Brain Neoplasms/complications , Gene Expression/genetics , Matrix Metalloproteinase 2/analysis , Matrix Metalloproteinase 9/analysis , Polymerase Chain Reaction/methods
19.
Journal of Korean Medical Science ; : 1012-1017, 2014.
Article in English | WPRIM | ID: wpr-70741

ABSTRACT

A 45-yr-old female patient was admitted with one-month history of headache and progressive left hemiparesis. Brain magnetic resonance imaging (MRI) demonstrated a mass lesion in her right frontal lobe. Her brain tumor was confirmed as a small cell glioblastoma. Her follow-up brain MRI, taken at 8 months after her initial surgery demonstrated tumor recurrence in the right frontal lobe. Contrast-enhanced 7.0T brain magnetic resonance imaging (MRI) was safely performed before surgery and at the time of recurrence. Compared with 1.5T and 3.0T brain MRI, 7.0T MRI showed sharpened images of the brain tumor contexture with detailed anatomical information. The fused images of 7.0T and 1.5T brain MRI taken at the time of recurrence demonstrated no significant discrepancy in the positions of the anterior and the posterior commissures. It is suggested that 7.0T MRI can be safely utilized for better images of the maligant gliomas before and after surgery.


Subject(s)
Female , Humans , Middle Aged , Brain Neoplasms/pathology , Frontal Lobe/diagnostic imaging , Glioblastoma/pathology , In Situ Hybridization, Fluorescence , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , ErbB Receptors/genetics
20.
Braz. j. med. biol. res ; 46(1): 71-80, 11/jan. 2013. graf
Article in English | LILACS | ID: lil-665802

ABSTRACT

Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.


Subject(s)
Humans , Apoptosis/drug effects , Cell Survival/drug effects , Diterpenes/pharmacology , Glioblastoma/drug therapy , Mikania/chemistry , Cell Line, Tumor , /drug effects , /drug effects , Diterpenes/isolation & purification , Fas Ligand Protein , Flow Cytometry , Glioblastoma/enzymology , Glioblastoma/pathology , Real-Time Polymerase Chain Reaction , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL